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Abstract

We analyse the macroeconomic effects of a debt consolidation policy in the Euro Area mimicking

the Fiscal Compact Rule (FCR). The rule requires the signatory states to target a debt-to-GDP

ratio below 60%. Within the context of Dynamic Stochastic General Equilibrium models (DSGE),

we augment a fully micro-founded New-Keynesian model with a parametric linear debt consolida-

tion rule, and we analyse the effects on the main macroeconomic aggregates. To fully understand

its implications on the economy, we study different debt consolidation scenarios, allowing the ex-

cess debt to be re-absorbed with different timings. We show that including a debt consolidation

rule can exacerbate the effects of the shocks in the economy by imposing a constraint on the public

debt process. Secondly, we note that the effect of loosening or tightening the rule in response to a

shock is heterogeneous. Shocks hitting nominal variables (monetary policy shock) are not partic-

ularly sensitive. On the contrary, we prove that the same change has a more pronounced effect in

case of shock hitting real variables (productivity and public spending shocks). Finally, we show

that the macroeconomic framework worsens as a function of the rigidity of the debt consolidation

rule. As a limiting case, we show that the effects on output, employment, real wages, inflation,

and interest rates are sizable.
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1 Introduction

Since March 2012, all but two member states of the European Union (EU) have signed the Treaty of

Stability, Coordination and Governance (TSCG)1. The result has been a tightening in the provisions

of the Stability and Growth Pact (SGP) which requires member states not to exceed a 3% threshold

of the primary deficit-to-GDP ratio each year. The tightening is reflected in the adoption of the

Fiscal Compact Rule (FCR) that requires the signatory states to follow a structural balanced budget

rule and to reduce the debt-to-GDP ratio to 60% within twenty years. Against this politico-economic

background, we take a positive stand and develop a framework to analyse the impact of a debt

consolidation policy mimicking the EU fiscal compact rule within a structural New-Keynesian (NK)

model. Our study is motivated by the large interest triggered in Europe by the sovereign debt crisis

and by the intense debate around the effects of the debt consolidation policy. In particular, a crucial

issue is whether implementing such a rule in a context of negative economic shocks is still desirable.

From a normative point of view, the fiscal compact rule only imposes additional constraints on the

government and assuming a benevolent planner it is always suboptimal. Moreover, one of the main

results of the fiscal policy literature is the optimality of the countercyclical debt policy (Barro, 1979;

Lucas and Stokey, 1983; Aiyagari et al., 2002), which prescribes that in case of a negative shock

(“bad times”) the government should run a deficit to finance the provision of public goods, while

in “good times” it should accumulate a surplus. The fiscal compact rule prescribes exactly the

opposite. Therefore, in bad times, the government should run a surplus, as the debt-to-GDP ratio

would deteriorate.

From a positive perspective, there is still an open debate on the optimality of a debt consolidation

process. In fact, evidence provided by Giavazzi and Pagano (1990) and the European Commission

(2003) suggests that about half of the EU countries starting a fiscal consolidation route between

1970 and 2000 have been experiencing immediate output growth. This finding is stark in contrast

with the standard Keynesian theory (Keynes, 1936), which states that increasing public spending

also increases the income level. From a positive point of view, understanding the effects of debt

consolidation policies represents a crucial challenge for the fiscal policy literature, and in this paper,

we take a step in this direction. In particular, we build on the New-Keynesian literature and analyse

the case of the EU fiscal compact rule. In New-Keynesian models, the planner’s role is limited to

decide the consumption of public good for each expenditure level. Instead, we include a debt con-

solidation process directly into the government spending equation, and we analyse the response of

the endogenous variables in the model to a battery of shocks by varying the degree of restriction

imposed by the debt consolidation rule. In particular, we are interested in understanding the inter-

1The United Kingdom and The Czech Republic. Also, Croatia joined the EU (July 2013) without signing the treaty.
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action between macroeconomic variables under the rule, and a one-time negative shock hitting the

economy. The novelty of the paper is twofold: first, we develop a framework to study linear debt

consolidation rule in a New Keynesian model. In fact, in this class of models, public spending is

usually treated as an exogenous random variable distributed as an autoregressive process. We extend

this rule by adding a deterministic component to the standard stochastic part. Therefore, the public

spending rule is made by two separate elements: the first is random and represents the standard

government spending shock; the second is deterministic and embeds the consolidation policy rule.

The role of the deterministic component is to constrain the government to implement a debt consoli-

dation policy, and to rule-out deficit spending imposing cuts whenever the government deviates from

the target. The choice of a New-Keynesian model is not by coincidence. First, this class of models

has demonstrated the ability to generate fluctuations similar to the data and replicating the main

business cycle features. Secondly, and most importantly for our analysis, Smets and Wouters (2003,

2007) have shown that in a NK model with Calvo price setting, a proxy for potential output can be

readily available by setting to zero the degree of price stickiness. Given that the fiscal compact rule

is defined with respect to potential output, we can exploit this feature to retrieve directly into the

NK model a potential output proxy, and defining the debt consolidation rule as a function of it.

As a second contribution, we calibrate the model on the Euro Area and study the effects of the

rule on the main macroeconomic aggregates. Also, we parametrize the model in a way that the rule

fully depends on a parameter αg, which governs the debt consolidation dynamics. By varying the

parameter, we are able to vary the tightness of the rule and to study the effects of an entire spectrum

of different debt consolidation policies.

The main findings of the paper are the following; first, we show that the debt consolidation rule

acts as a propagator mechanism in the impulse response functions by imposing a restriction on their

dynamics. Secondly, we show that in case of a negative shock hitting nominal variables (monetary

policy shock) the effects are mild, while in the case of a negative shock hitting real variables (technol-

ogy and public spending shock), the macroeconomic framework worsens as a function of the rigidity

of the debt consolidation rule. As a limiting case, we show that the effects on output, employment,

real wages, inflation, and interest rates are sizable.

Finally, we propose an alghorithm to sistematically address sensitivity issues in the calibration of

New Keynesian models, and we show that the main results of the paper remain unchanged.

The reminder of the paper is structured as follows. Section 2 motivates the analysis, and shows the

sets of consolidation rules covered in the article. Section 3 develops the micro-founded model, and in

section 4 we higlights the model calibration. Section 5 shows the results. Finally, section 6 concludes.
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2 Motivation

Figure 1 shows the distribution of the debt-to-GDP ratio for the 28 EU countries in 2012. The black

horizontal line represents the maximum level of debt attainable after the ratification of the treaty as

well as the target that countries have to reach in twenty years. Analysing the chart, it is easy to see

that countries are highly heterogeneous with respect to their debt levels. Having a different stock

of debt leads to different constraints in terms of public spending. Signatory countries that have a

debt-to-GDP ratio above the horizontal line (red bins) are required to follow a debt consolidation

path according to the FCR, while countries below the horizontal line (blue bins) can keep their budget

balanced (or in case running a minor deficit). For this reason, the FCR has different implications for

different countries. According to the rule, high debt countries, i.e., those having a debt-to-GDP level

above the horizontal line, have to reduce the amount of debt below the horizontal line by spreading

it linearly in the following years. To examine the implication of this particular consolidation path, in

equation (1) we modeled the FCR as a linear cut depending on a parameter α ∈ [0, 1], which reflects

both the amount and the duration of the reduction.

bt+1

yt+1
≤ bt
yt

+ α

(
b∗

y∗
− b0
y0

)
(1)

Where bt/yt is debt-to-GDP, b∗/y∗ is the target debt-to-GDP and b0/y0 is the initial stock of debt-to-

GDP when the rule enters into force. According to this formulation, α is the inverse of the number

of years needed to implement the debt reduction to the target level (α = 1/δ, δ ∈ R+). As δ −→ ∞,

α −→ 0, and the rule implies a balanced budget rule (BBR). While, as δ −→ 1, also α −→ 1, meaning

the target must be reached in one period. Also, the term in brackets implies that when the target

is smaller than the initial level of debt (b∗/y∗ < b0/y0), the rule implies a debt reduction. While,

in the opposite situation (b∗/y∗ > b0/y0) it allows for deficit spending2. Applying equation (1), we

compute the expected consolidation path for the 25 EU signatory states, and we show in table 1 their

total debt reduction and the annual surplus required every year to remain on that path. Mimicking

the FCR we set b∗/y∗ = 60%, α = 0.05, and b0/y0 to the 2012 gross central government debt for

each country3. Countries marked in red refer to those that have to implement some form of debt

consolidation, while blue marked countries are not constrained by the rule . High debt countries

2To rule-out deficit spending a piece-wise linear rule would be needed:
bt+1

yt+1
≤ bt

yt
+ α

(
b∗

y∗ −
b0
y0

)
if b∗

y∗ <
b0
y0

bt+1

yt+1
≤ bt

yt
if b∗

y∗ ≥
b0
y0

(2)

However, this creates a lot of complexity in the model. In fact, preserving a rule of this form in a DSGE model
rules out the possibility to solve the model linearly with a first-order perturbation approach. In turn, this implies that
the model has to be solved non-linearly. To avoid dealing with such complexity, in the analysis we stick to the more
straightforward linear rule letting the constraint in equation (1) always being binding.

3The dataset we used is available on the Eurostat website.
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such as Greece, Italy, Portugal, and Ireland are required to run a considerable surplus every year to

fulfill the consolidation rule. In contrast, low debt countries such as Finland, Denmark, and Sweden

can simply balance their budget4. Figure 2 shows the debt path for selected high and low debt

EU countries, respectively marked with red and blue lines. The path abstracts from GDP growth.

Data until 2012 are actual realizations, while data after 2012 are forecasted assuming the dynamics

described in equation (1) and shown in the grey area. In the chart, we also display the median of the

28 EU countries as a solid black line with markers and its median consolidation path. The difference

between two consecutive periods in the shadow area represents the surplus that a country needs to

run to fulfill the rule. The chart shows that there is a marked difference between the two clusters

of countries. In particular, the high debt countries display a steep path. This feature implies that a

high surplus is demanded each year. For this reason, we suppose that the full implementation of such

a rule could have some relevant implications on the macroeconomic outlook of such countries. From

a theoretical standpoint, our idea is that having some rigid constraints on the fiscal side may have

non-negligible effects on the dynamics of other macroeconomic variables. On one side, restricting

public spending may have a negative effect on output, consumption, and employment; on the other

hand, it may limit the government ability to counteract exogenous shocks. To shed some lights on

the topic, in the next section, we develop a general equilibrium model which includes a non-standard

government sector, and we use it as a laboratory for our experiments. In particular, we augment

the standard government sector included in New-Keynesian models, by adding a debt consolidation

rule which mimics the one in this section. The government has to abide by a debt consolidation

path, while the economy is hit by negative shocks. In this way, we are able to analyse not only the

debt path but also the dynamics of all the variables in the model. Finally, we parametrize the debt

consolidation rule, in a way in which we can assess the dynamics of the economy by varying the

degree of tightness of the rule.

3 Model

To study whether a debt consolidation path, like the one implied by the FCR, may affect the main

macroeconomic variables in the economy, we study the effects of including such provision in a fully

microfounded NK model. Our interest is mainly to analyse the effects of the FCR on the economy

outside the equilibrium, i.e., when the debt level has deviated from its target (which is also assumed

to be the steady-state level). For this reason, our analysis mainly focuses on the impulse response

functions of the system. In particular, the model we use for the analysis is a New-Keynesian model

embedding infinitely life-time utility maximiser agents and monopolistically competitive firms pro-

4The original FCR includes the possibility to run a 1% deficit/GDP spending policy if the debt-to-GDP ratio is
below 60%.
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ducing differentiated goods using only labor and technology. To keep the model as smooth as possible,

we do not include capital and investment. Each period, households choose between consumption and

saving, and the only asset in the model is a risk-free bond issued by the government. Finally, a

Central Bank is in charge of maintaining price and output stability.

Household

The household sector is made by a representative household maximising his expected lifetime utility

U(Ct, Nt) at period t = 0. We assume a utility function depending only on consumption Ct and

normalised leisure 1−Nt. Consumers minimise expenditure given the consumption level of composite

good Ct. We assume that regularity conditions on the utility function hold and that ∂U/∂Ct > 0,

∂U/∂Nt < 0, ∂U/∂C2
t < 0 and ∂U/∂N2

t < 0. Moreover, we assume a standard constant relative risk

aversion (CRRA) functional form of additively separable consumption and labor.

max
Ct,Nt,Bt

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
− N1+φ

t

1 + φ

)
(3)

Where β is the intertemporal discount factor, σ is the coefficient of the relative risk aversion, and φ

is the inverse of the Frisch elasticity. E0 is the expectation operator conditional to the information

set at time zero E [·|I0] We also assume that there is a continuum (in the [0, 1] interval) of different

goods produced with constant elasticity of substitution (CES) technology.

Ct =

(∫ 1

0
Ct(i)

1− 1
ε di

) ε
ε−1

(4)

Where ε is the parameter controlling the degree of substitutability among goods. The utility is

maximised subject to the household’s budget constraint, a downward-sloping demand curve, and

no-Ponzi game condition in the government bonds market, as described in equations (5) to (7).

∫ 1

0
Pt(i)Ct(i)di+Bt ≤ (1 +Rt)Bt−1 +WtNt − Tt + ΠF

t (5)

Ct(i) = Ct

(
Pt(i)

Pt

)−ε
(6)

lim
T→∞

Et {BT } ≥ 0, ∀t (7)

The representative consumer allocates wealth between consumption and saving. In the equations,

Pt(i) denotes the prices of different goods i, (1 + Rt) is the gross interest rate on risk-free bonds Bt

issued by the government and purchased in the previous period. Tt is a lump-sum tax/transfer made
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by the government to households. Wt stands for labor price (wage) and ΠF
t captures the dividends

coming from firms to households (as it is assumed that households own the firms). After some

algebraic manipulations and by plugging equation (6) into the consumer’s budget constraint, we can

write the household mazimisation problem as a current value Lagrangian–where Λt is the Lagrangian

multiplier. By solving the system of first-order conditions we can recover the labour supply (8) and

the Euler equation (9).
Wt

Pt
= Nφ

t C
σ
t (8)

Et

[
β

(
Ct+1

Ct

)−σ 1

Πt+1

]
=

1

(1 +Rt)
(9)

Where Πt+1 ≡ Pt+1/Pt is the gross inflation rate.

Firms

We assume that firms operate under monopolistic competition and produce differentiated goods by

using labour Nt as their only source of input. Technology At is equal among firms, and the production

function takes the following form:

Yt(i) = AtNt(i)
1−α (10)

Where Yt(i) stands for the production of output i and α is the output elasticity concerning labor

input. In the paper, we assume that price levels adjust à la Calvo (Calvo, 1983) with a fraction 1− θ

of re-optimizing firms and a fraction θ of non-re-optimizing firms with θ ∈ [0, 1]. This assumption

is extremely useful because it allows to compute a proxy for the potential output of the economy

by setting to zero the fraction of non-re-optimizing firms. Imposing θ = 0 allows removing the only

source of inefficiency in the production sector by releasing the price rigidity assumption. Equation

(11) displays the aggregate price index under the Calvo price assumption.

Pt =
(
θP 1−ε

t−1 + (1− θ)P ∗1−εt

) 1
1−ε (11)

Where P ∗t is the optimal price chosen by the optimizing firms. As θ → 0, Pt = P ∗t implying that

all the firms can reset their prices as in a flexible price economy. By dividing both sides by Pt−1,

equation (11) can also be rewritten in terms of gross inflation.

Π1−ε
t = θ + (1− θ)

(
P ∗t
Pt−1

)1−ε
(12)
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Re-optimizing firms solve a profit maximisation problem subject to a downward sloping demand

constraint. The Lagrangian for this problem can be written as in equation (13).

max
P ∗t

L3 ≡
∞∑
k=0

θkEt

(
Qt,t+k

(
P ∗t

(
P ∗t
Pt+k

)−ε
Yt+k −Ψt+k

((
P ∗t
Pt+k

)−ε
Yt+k

)))
(13)

Where Qt,t+k = βk
(
Ct+k
Ct

)−σ
Pt
Pt+k

is the stochastic discount factor. As we assume that households

own firms, coerently we assume that the two agents have the same discount factor. Ψt+k is a cost

function depending on the production level. We assume that the regularity conditions on the cost

function hold. Maximising for P ∗t , we retrieve equation (14).

P ∗t =M
∑∞

k=0(θβ)kEt
[
C−σt+kYt+kPt+kMCt+k

]∑∞
k=0(θβ)kEt

[
C−σt+kYt+k

] (14)

where M = ε
ε−1 is the firms’ mark-up. Notice that when θ = 0 the optimal price setting is given

by P ∗t =MΨ′t|t. As a second-step, firms choose the optimal amount of labor to minimise their total

costs subject to the resource constraint. Equations (15) and (16) display the Lagrangian function for

the firms’ minimisation problem and the associated first-order condition for Nt.

min
Nt(i)

L4 ≡
Wt

Pt
Nt(i)−MCt

(
Yt(i)−AtNt(i)

1−α) (15)

∂L4

∂Nt(i)
≡MCt =

Wt

Pt

1

(1− α)AtNt(i)−α
(16)

Where MCt is the Lagrangian multiplier, which also represents the marginal cost of increasing the

production by one unit (shadow price). At is a forcing variable representing a structural shock hitting

the available technology. We assume that ln(At) is distributed as an autoregressive process of order

one with normal Gaussian innovation, as in equation (17).

ln(At) = ρaln(At−1) + εa,t, εa,t ∼ N
(
0, σ2

a

)
(17)

Where ρa is the autoregressive parameter with |ρa| < 1, and σ2
a ∈ R+ is the variance of the Gaussian

innovation.

Government

The government purchases a continuum of different public goods produced by firms under monop-

olistic competition. Like households, it maximises the consumption of public goods for any level of

expenditure. Government consumption is financed by lump-sum taxes and abide by the government
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budget constraint (GBC) in real terms.

BR
t = (1 +Rt)

BR
t−1

Πt
+Gt − TRt (18)

Where BR
t = Bt/Pt and TRt = Tt/Pt are real government debt and tax revenue. As anticipated, in

our model public spending is not set as a purely exogenous process, but it is composed of two different

elements; the first component is deterministic and determines the debt consolidation process. The

consolidation rule is a linear function of the deviation from the debt-to-GDP target. We model the

deterministic part of the process according to this rule to mimic a simplified version of the EU Fiscal

Compact. We call it Fiscal Compact Rule (FCR). The second component is a stochastic process

that can be considered as an unexpected government spending shock Ωt. We assume that ln(Ωt) is

distributed as an autoregressive process of order one with normal Gaussian innovation, in equation

(20). As in the optimal fiscal policy literature, this can be thought as a war or a natural catastrophic

event. We assume the same process for the tax revenue, as displayed by equation (21).

Gt = TRt + αg

(
BR∗

Y ∗
− BR

t

Y F
t

)
+ Ωt (19)

ln(Ωt) = ρωln(Ωt−1) + εω,t, εω,t ∼ N
(
0, σ2

ω

)
(20)

ln(TRt ) = ρτ ln(TRt−1) + ετ,t, ετ,t ∼ N
(
0, σ2

τ

)
(21)

Where Y F
t is the potential output, ρi is the autoregressive parameter with |ρi| < 1, and σ2

i ∈ R+ is the

variance of the Gaussian innovation, with i = {ω, τ}. Equation (19) represents the debt consolidation

rule (in real terms) that the government has to follow. The main differences between equation (1) and

equation (19) is that we substitute the difference between the debt-to-GDP in two consecutive period

with the primary deficit defined as Dt ≡ PtGt − Tt. Secondly, we include in the rule a stochastic

process to replicate the effect of an unexpected public spending shock. As in equation (1), the term

BR∗/Y ∗ is the government debt-to-GDP target exogenously set in the fiscal compact rule. We assume

that the target level is equal to the steady-state level BR/Y . This assumption will be useful in the

log-linearised version of the model, where variables are described as deviation from their steady-state

level. Assuming that the target level equals the steady-state level implies that the log-deviation from

the steady-state is also the deviation from the target. With respect to equation (1), we also assume

that the initial level of debt is computed on the basis of natural level of output instead of computing

it with respect to actual output. Following Smets and Wouters (2007), in the paper we compute the

natural level of output as the output prevailing in flexible prices. Including potential output into

the debt consolidation process allows us to define the deficit as the structural deficit in the fiscal

9



compact rule. From a dynamic perspective, including a debt consolidation policy of this form might

be considered as imposing a constraint in terms of the timing of the system shock absorption. We

can clarify this point using a simple example, and recalling that in a general equilibrium setting, in

the absence of shocks, the variables are always at their steady-state level. Suppose that the Central

Bank decides to increase the interest rate unexpectedly (monetary policy shock). Starting from the

policy rate, all the variables in the system move away from their steady-state level. Then, including

into the system equation (19) imposes a constraint on the debt dynamics and the return path to the

steady-state by determining the amount of public goods that the government can purchase. This

process depends on the parameter αg which determines the velocity with which the debt has to come

back to their steady-state level, and indeed the velocity with which the whole system has to come

back to its steady-state. By changing the size of αg, it is possible to change the velocity with which

the shock is absorbed. It is useful to think αg as the inverse of the number of years in which the

debt reduction must be implemented. As αg −→ 0, the rule implies a balanced budget rule (BBR)

Gt = TRt . While, as αg −→ 1, the target must be reached in one period by running a surplus equal to

the amount of the debt in excess EDt with respect to the target level Gt − TRt = −EDt. By varying

the parameter αg, it is possible to explore the entire spectrum of linear debt consolidation policies

which take the form of equation (19)5.

Central Bank

We assume that a Central Bank is in charge of maintaining price and output stability by responding

to output and inflation deviations from their respective targets. The feedback rule employed by the

Central Bank is described in equation (22).

Rt
R

=

(
Πt

Π∗

)φπ ( Yt
Y T

)φy
Θt (22)

Where Π∗ and Y T are the Central Bank targets in term of inflation and output, R is the steady-state

level of the net interest rate, φπ and φy are the reaction coefficients of inflation and output deviations

from the targets. Finally, Θt is the monetary policy shock. We assume that ln(Θt) is distributed as

an autoregressive process of order one with normal Gaussian innovation, as in equation (23).

ln(Θt) = ρaln(Θt−1) + εθ,t, εθ,t ∼ N
(
0, σ2

θ

)
(23)

Where ρθ is the autoregressive parameter with |ρθ| < 1, and σ2
θ ∈ R+ is the variance of the Gaussian

innovation.

5Even if, in the particular application, this spectrum must be reduced to the parameter space that ensures the final
system of expectation difference equations to converge (Blanchard and Kahn, 1980). We are briefly introducing this
problem in the next section.
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3.1 Equilibrium

In the model defined by equations (8) to (14) and (16) to (23), a competitive equilibrium is defined

as a vector of prices {Pt, Rt,Wt}, allocations {Ct, Yt, Gt, Nt, Bt, Tt,MCt,Λt} and a process for the

exogenous state variables {At,Ωt, Tt,Θt} such that:

• Households maximise the utility function subject to the budget constraint.

• Firms maximise the profit function subject to the resource constraint.

• The government abide by the budget constraint and by the fiscal compact rule.

• The Central Bank abide by the feedback rule.

• The labor and good markets clear.

The last point implies that all the output produced is also consumed, either by households or the

government (equation 24), and that labor supply is equal to labor demand (equation 25).

Yt = Ct +Gt (24)

Nt =

(
Yt
At

) 1
1−α

∫ 1

0

(
Pt(i)

Pt

)− ε
1−α

di (25)

3.2 Steady-state

The detailed steady-state relationships of the model are reported in the appendix. In what follows,

we assume that variables without the time t index denote the steady-state counterpart of the dynamic

variables. Thus Pt = P , Rt = R, Wt = W , Ct = C, Yt = Y , Gt = G, Nt = N , Bt = B, Tt = T ,

ΠF
t = ΠF , MCt = MC, Λt = Λ, At = A, Ωt = Ω, and Θt = Θ.

3.3 Flexible price equilibrium

Equation (19) describes the fiscal compact rule as a function of potential output Y F
t . Thus, we need

to retrive a functional form for this variable. Starting from the firms’ price maximisation, we get the

flexible price mark-up P ∗t =MΨ′t|t. Given that under flexible prices P ∗t = Pt we have MCt = 1
M . By

plugging the flexible price mark-up into the labor demand equation MCt = Wt
Pt

1
At(1−α)N−αt

, and using

the market clearing condition Ct = Yt + Gt, the labor supply Wt
Pt

= Cσt N
φ
t , and the labor market

clearing condition Nt =
(
Yt
At

) 1
1−α

we derive equation (26).

(Y F
t −GFt )σ

(
Y F
t

)φ+α
1−α =M(1− α)A

1+φ
1−α
t (26)
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Where variables (Y F
t , G

F
t ) with the superscript F denotes variables in flexible price equilibrium. To

disentangle Y F
t , we log-linearise the equation (26) around the non-stochastic steady-state. Solving

for the log-linear output in flexible prices ŷFt = ln(Y F
t ) − ln(Y ), we rewrite ŷFt as a function of the

technology shock and government spending in log-deviation from the steady-state.

ŷFt =
C (1− α)

σY (1− α) + C (φ+ α)

(
φ+ α

1− α
at +

σG

C
ĝFt

)
(27)

Where at = ln(At), and ĝFt = ln(GFt )−ln(G). Finally, substituting into equation (27) the government

budget constraint and fiscal compact rule in log-deviation from the steady-state in flexible-price (real

terms) as described in equations (28) and (29), we derive an equation for ŷFt in terms of forcing

variables, and predetermined variables. We assume that in a flexible price equilibrium, the output-

gap ỹt is zero (ỹt = ŷt − ŷFt ), inflation is at target level (π̂t = κ
∑∞

k=0 β
kỹt+k) and firms can freely

re-set prices (θ = 0). This is in equation (30).

b̂Ft =
(1 +R)

Π
b̂Ft−1 +

R

Π
θt +

G

B
ĝFt −

T

B
τ̂t (28)

ĝFt =
T

G
τ̂t +

αgB

Y G
(ŷFt − b̂Ft ) +

Ω

G
ωt (29)

ŷFt = Ξ

(
φ+ α

1− α
ât + ΞG

(
(αg + Y )T

Y G
τ̂t −

αgBR

Y GΠ
θt +

Ω

G
ωt −

αgB(1 +R)

ΠY G
b̂Ft−1

))
(30)

where ŷt = ln(Yt) − ln(Y ), π̂t = ln(Πt) − ln(Π), b̂Ft = ln(BF,R
t ) − ln(BR), τ̂t = ln(TRt ) − ln(TR),

ît = ln(Rt) − ln(R), p̂t = ln(Pt) − ln(P ), p̂∗t = ln(P ∗t ) − ln(P ), θt = ln(Θt) ωt = ln(Ωt). Also, the

terms Ξ =
(

(Y+αg)C(1−α)
(σY (1−α)+C(φ+α))(Y+αg)−(1−α)σαgB

)
and ΞG = σGY

C(Y+αg) are convolutions of structural

and steady-state coefficients.

4 Calibration

The model is calibrated on the Euro Area and comprises 28 parameters. Among these, 9 are structural

parameters θS = (σ, αg, β, φy, φπ, θ, α, ε, φ), 10 are parameters related to the forcing variables – i.e., re-

duced form parameters – θRF = (ρa, ρζ , ρθ, ρω, ρτ , σa, σζ , σθ, σω, στ ), and 9 are steady-state coefficients

θSS = (P,Ω,MC,R,C,G, Y,B, T ). We select the structural parameters according to the calibration

and the estimation result of Smets and Wouters (2003). The authors estimated a medium-scale DSGE

model for the EA using quarterly data from the Area Wide Model and Bayesian techniques. For the

calibrated parameters, we report the calibrated value, while for the estimated parameters we report

the median value of the posterior distribution obtained through the Metropolis-Hastings (Metropolis
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et al., 1953; Hastings, 1970) sampling algorithm. The Smets and Wouters (2003)’s results are also in

line with microeconomic evidence and other studies on the EA (see for example Coenen and Straub

2005). Therefore, we set the discount factor β to 0.99, to reflect an annual steady-state interest rate

level of 4%, the coefficient of relative-risk aversion σ is set equal to one, collapsing
C1−σ
t

1−σ → ln(Ct)

(this is also consistent with Casares 2001), the output elasticity with respect to labor α = 0.3, and the

inverse of the Frish elasticity is set to 1.18. The elasticity of substitution between different goods ε is

set to 3.7, implying a steady-state mark-up equal to 37%. This is the average mark-up on the Euro

Area for the period 1981-2004 (Christopoulou and Vermeulen, 2012). θ is set to 0.909, implying an

average price duration of ten quarters. This value is sligthly higher than in other studies for the EA,

as for example Galı et al. (2001), where the average price duration is set to four quarters (θ = 0.75).

However, our results are robust to changes in this parameter. The coefficients of the Central Bank

feedback rule are set to φπ = 1.661 and φy = 0.143. Setting these parameters to more standard

value commonly found in the US literature (φπ = 1.5, φy = 0.125 ) does not change our results. The

parameter regulating the debt consolidation tighteness αg is set in the baseline case to 0.05. This

corresponds to an excess debt reduction to be achieved in twenty periods. As we are interested in

the effects of the rule on the main macroeconomic aggregates, we solve the model for different values

of αg. In particular, we allow this parameter to range from 1 to 0.025. This corresponds to a debt

reduction between 1 to 40 periods. The model is robust to variation in this parameter, and in the

next section, we show the impulse responses related to these different values. For what concerns the

reduced form parameters, we still refer to the median estimate in the Smets and Wouters (2003)’s

article. Therefore, ρa = 0.828 and ρω = 0.956 with respective standard deviations equal to σa = 0.612

and σω = 0.329 percentage points. Also, we set ρζ = ρθ = 0, collapsing the AR(1) processes to i.i.d.

Gaussian white noises with standard deviations σζ = 0.162 and σζ = 0.129. Finally, we assume

that the taxation shock has the same persistence and standard deviation of the government spending

shock ρτ = ρω and στ = σω. Results are robust to changes in this assumption.

Regarding the steady-state parameters, the choice of β and ε pin down respectively R to 1% quarterly,

and MC = 1/M to 0.729 (from equation B.4 in the appendix). Also, Π is equal to one as a ratio of

steady-state prices. We set B/Y to 60%, corresponding to the fiscal compact rule target. This value

is also consistent with other calibration of the EA as Coenen and Straub (2005). The remaining great

ratios C/Y and G/Y are respectively set to 0.74 and 0.259. These values are consistent with the long-

run averages of quarterly data from the Area Wide Model for private consumption and government

consumption for the period 1980-2012. Also, we assume T = G in steady state. From the good market

clearing condition, in steady-state Y is normalized to 1 (equation B.9 in the appendix). Finally, we

set Ω = 1 consistent to a zero mean autoregressive process (ln(Ω) = 0). Tables 3 to 5 summarise the

entire set of calibrated parameters.
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5 Results

In this section, we present the results from the model simulations and impulse response functions

(IRFs) derived from the model.

5.1 Simulation

As outlined in the preceding sections, including a debt consolidation rule like the FCR in equation

(19) imposes a constraint on the dynamics of debt towards the steady-state by determining the

amount of public goods that the government can purchase. The dynamics depends on the parameter

αg which determines the velocity with which the debt returns to its steady-state level and indeed the

velocity at which the whole system returns to its steady-state. In order to show the fiscal compact

rule in action, we simulate T = 100000 data points from the model for three levels of αg = (0.025,

0.05, 0.25), plus a limiting case in which αg = 1. Figure 3 shows the distributions of the simulated

data on the left panels and the sample variance on the right panels for public debt and spending.

In particular, the solid black lines show the baseline rule αg = 0.05, the dashed blue lines the strict

rule αg = 0.25, the dash-dotted red lines the loose rule αg = 0.025, and the solid green lines with

markers the limiting case in which αg = 1. From the left panels, we notice that the rule succeeds

in shrinking the variance of the public debt and spending distributions as a direct consequence of

tightening the fiscal compact rule. Moreover, from the right-hand panel, it is possible to notice

that, while the effect on the public spending variance is linear, the effect on debt is exponential.

To understand this concept, αg has to be recalled as the inverse of the periods in which the debt

reduction must be implemented. As αg → 0, the number of periods in which the debt level has to

be reabsorbed increases exponentially. As complementary information, figure 4 shows the 50 periods

moving-average of a subset of the simulated data (Ts = 2000) for public debt and spending from the

models. The figure shows how the rule shortens the oscillations of the two variables. In particular,

for public debt, the period of the cycle is heavily shrunk by the rule, showing that the size of αg is

affecting the velocity of the mean-reverting behavior of the system. This feature is also evident in

the curvature of the public debt impulse response functions shown in figure 5 to 9.

5.2 Impulse response analysis

Figure 5 to 9 present the impulse response functions (IRFs) of the endogenous variables due to an

unexpected increase in the following forcing variables: technology at, cost-push ζt, monetary policy

θt, government spending ωt, and taxation τt. Variables are shocked one at a time by a normalised

1% surprise. In what follows, we report and describe the log-deviation from the steady-state of
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the following variables: output, potential output, output gap, consumption, real public debt, real

government spending, inflation, nominal interest rate, real interest rate, employment (hours worked),

real wage and marginal cost. For the calibrated values of the parameters, the stability conditions of

the structural model are satisfied, imposing a steady-state reverting behavior to the system.

Figure 5 describes the effects of a 1% negative technology shock. First, notice that the model is

robust to different calibration of αg, and that the IRFs always reflect a similar behavior. In the four

sets of impulse responses, the main differences are the impact and the persistence. However, the

sign and the path are mostly unchanged across calibrations. Consistently with the economic theory,

a negative technology shock depresses output and potential output. Given that potential output is

more affected by the shock, the output gap is positive and inflation raises. Employment increases to

maintain a constant level of production, rising wages, but at the same time consumption decreases.

The Central Bank raises the policy rate to stabilize the inflation and the output gap. Given the

worsening in potential output, the debt-to-GDP ratio is now higher than its target level; thus, the

debt must be reduced following the FCR and by running a surplus. Analyzing the path for the three

rules, we notice that as αg increases, the curvature of the IRFs increase. This feature is evident by

looking at the public debt response. When αg = (0.25, 1) the hump shape dynamics of the public debt

IRF is much more pronounced, while as αg = (0.05, 0.025) the hump shape dynamics is smoother.

This, in turn, implies that also the velocity with which the variable returns to its steady-state level

increases.

Analysing the four sets of impulse response functions, it is worth noticing that a stricter rule makes

worsens the macroeconomic framework. When αg increases, output, employment and real wages are

lower. The reason is linked to the role of the FCR. In fact, when a negative productivity shock hits

the system, the debt-to-GDP ratio worsens and deviates from its target level. Then, depending on

the debt consolidation rule, the government will need to run a larger/smaller surplus. When the rule

is stricter, the surplus must be larger to reach the target. Running a surplus of different sizes creates

a gap between the impulse response functions with different levels of αg. When the surplus is larger,

the other variables are negatively affected, and the shock is boosted out, while when the surplus can

be spread in many years, this channel can be neglected. As a limiting case consider αg = 1, meaning

that the target must be reached immediately. The solid green lines show that output, employment,

and real wages are considerably lower than in the baseline case. Also, consumption is slightly lower.

However, we have the presumption that this small reduction can be an artifact of the model. In fact,

in the New-Keynesian macroeconomic literature, the negative correlation between consumption and

public spending is a well-known puzzle, and it is mainly due to the presence of “Ricardian agents” in

the model. Articles like Coenen and Straub (2005) addresses this problem by including a second type

of agents beside the Ricardian households – i.e., “non-Ricardian households”. We have not addressed
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this puzzle in the present paper. However, adding this feature would be an interesting starting point

for a future extension of the model.

Figure 6 and 7 show the IRFs for a negative government spending and taxation shocks. The IRFs

present dynamics similar to the technology shock, especially in the second case (figure 7). Differently,

figure 6 presents a more complex scenario. In fact, the effect on potential output is now lower, and

the public spending has to decrease more to abide by the fiscal compact rule. In turns, debt can

return faster to the steady-state. Nevertheless, output, employment, real wages, and consumption

are still lower in case of a tighter rule. Finally, figure 8 and 9 show the IRFs for a negative cost-push

and monetary policy shocks. The velocity of absorption depends mainly on the calibration of the

autocorrelation parameters ρζ = ρθ = 0, which shrinks the AR process toward a Gaussian white

noise. Although the response of the variables in both cases is sizable, at least for the monetary policy

shock, we cannot appreciate any significant effect by varying the tightness of the fiscal compact rule.

Instead, for the cost-push shock, even if the movements in the debt consolidation rule parameter

cannot generate a visible variation in the impulse responses, we can appreciate a significant difference

in the impact on output, employment, and real wages as for the other shocks. To quantify this

point, figure 10 summarises the IRFs results. It shows the impact difference of the impulse response

functions for technology, government spending, taxation and cost-push shocks for the models with

αg = 0.025 and αg = 16. When the difference is negative, the impact is lower for the limiting case

(red bars), while when the impact is higher, the difference is positive (blue bars). The figure shows

that a negative technology shock decreases real variables by more than 20 basis points under the

limiting rule. The same is true for the cost-push shock. Taxation shock has milder effects, while

spending presents the largest. Infact, it decreases real variables up to 70 basis points with respect to

the loose case.

5.3 Sensitivity

As a final exercise, we check the sensitivity of the model to the calibrated parameters. First, for each

parameter ϑ(i) ∈ θS\{αg} = (σ, β, φy, φπ, θ, α, ε, φ), we set a plausibility range [ϑ̄(i), ϑ(i)]. Secondly,

for each value in the plausibility range, we reduce the model (King and Watson, 2002), we check the

saddle path stability property, and, in case a unique solution exists, we solve it (Blanchard and Kahn,

1980; King and Watson, 1998). In performing this step, we adopt a ceteris paribus approach – i.e.,

we maintain all but one the parameter fixed at the calibrated level (tables 3 to 5), and varying the

remaining one. Finally, we compute the IRFs to each shock in Xt ≡ [at, ζt, θt, ωt, τt]. For each couple

parameter/shock, the output of the algorithm is a three-dimensional array containing at each horizon

the response of each variable in Yt\{b̂t−1, b̂
F
t−1} ≡

[
ŷt, π̂t, ît, b̂t, ĝt, ŷ

F
t , b̂

F
t , ĝ

F
t

]
for each parameter in

6The results for the monetary policy shock are not reported as they are approximately zero.
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the plausibility range. Under this approach, the IRFs distribution can be treated, on the one hand,

as a measure of the model sensitivity to parameters values, on the other, as a measure of uncertainty

around the true parameters. The exercise is repeated for αg = (0.025, 0.05, 0.1, 1) , and for each level

of αg the 5th and 95th percentiles of the IRFs distribution are reported. The procedure is summarised

by algorithm 1. Table 6 reports the plausibility range for each parameter ϑ(i).

Algorithm 1 IRFs sensitivity

for αg = (0.025, 0.05, 0.1, 1) do

for ϑ(i) = [ϑ̄(i), ϑ(i)] ∈ Θ(i) do
Reduce the model untill rank(A

(
Θ(i)

)
) = r, where A

(
Θ(i)

)
) is (r × r)

Check the model stability |A
(
Θ(i)

)−1
B
(
Θ(i)

)
− Irλ| = 0

Solve the model EtYt+1 = A
(
Θ(i)

)−1
B
(
Θ(i)

)
Y
t
+ A

(
Θ(i)

)−1
C
(
Θ(i)

)
X
t

Derive IRFs(Θ(i))
end for
Compute pKi = percentile(IRFs(Θ(i)),K), K = {5, 95}

end for

Where Θ(i) stands for Θ(ϑ(i)), and λ are the eigenvalues of the matrix A
(
Θ(i)

)−1
B
(
Θ(i)

)
. Figure

11 shows the IRFs for the case in which the discount factor β is the varying parameter. The impulse

responses refer to a negative 1% technology shock. The example corresponds to the case in which

households are more impatient than in the standard calibration of the model, and requires a higher

interest rate to shift consumption across periods. The lines in the chart display the IRFs for the

standard calibration of the model Θ, and the different levels of αg as described in the previous

paragraph. For each IRF, the areas of the respective colors highlight the intervals associated with

the (5th, 95th) percentiles of the IRFs distribution computed by algorithm 1. The figure displays

some mixed results. On the one hand, variables as output, debt, and spending are not affected

by changes in the discount factor. On the other, variables as wages, inflation, and interest rates

show some variations. This feature is particularly evident for the firsts horizons. The main finding

highlighted by the chart is twofold; first, it demonstrates the robustness of the model IRFs to different

calibrations of the parameters. Secondly, it confirms our main results by showing that tightening the

fiscal compact rule leads to a worst macroeconomic outcome. This general pattern holds for all the

shocks and structural parameters in θS , and their respective plausibility range. For completeness, we

also display in figure 12 and 13 the shocks related to government spending and taxation. The full set

of IRFs for each combination shock/parameter is reported in the online appendix.

6 Conclusion

The paper analyses the macroeconomic effects of a debt consolidation policy in the Euro Area mim-

icking the Fiscal Compact Rule. We augment a fully micro-founded New-Keynesian model with a
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parametric linear debt consolidation rule, and we analyse the response of the endogenous variables

in the model to exogenous shocks. To fully understand the implications on the economy, we study

different debt consolidation scenarios, allowing excess debt to be re-absorbed with different timing,

and we show by including a debt consolidation rule that the effects of the shocks in the economy

can be exacerbated . We also show that the effect of loosening or tightening the rule in response to

a shock hitting nominal variables is mild, while the same variation has a more pronounced effect in

case of a shock hitting real variables. Finally, we demonstrate that the macroeconomic framework

worsens as a function of the rigidity of the debt consolidation rule. As a limiting case, we show that

the effects on output, inflation, interest rate and employment are sizable.

For future developments, we highlight that including “non-Ricardian agents” into the model would

be interesting to understand the effects of the debt consolidation rule on consumption. Naturally,

also extending the model in various dimensions would benefit the analysis. In fact, as we show in the

article, it is straightforward to incorporate a debt consolidation rule in a small-scale New-Keneysian

model. However, including the same rule in a more extensive model bears the same difficulty level.

For example, other ordinary frictions can be incorporated, as habit-persistence or wage stickiness.

The same is true for an economy with a fully fledged government sector, or for an open economy

model. We believe that all these extensions can be crucial and that each of these can shade some

lights on the dynamics imposed by a debt consolidation rule in a New-Keynesian setting. As a final

point, in the article, we thought that understanding the implications of a debt consolidation rule in

the case of negative shocks was the most interesting case from an economic perspective. However,

we suspect that positive and negative shocks under a debt consolidation policy rule may not have

a symmetric effect. The reason is that a positive shock can help in dealing with a consolidation

path creating more resources, while a negative shock absorbs additional resources and may further

constrain the response of the economy to shocks. We think that understanding this point would be

relevant and can provide a deeper understanding of the mechanisms relating debt constraints with

exogenous shocks.
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Tables and figures

Table 1: debt consolidation path implied by the fiscal compact rule.

Country Debt/GDP Tot. Reduction Annual Reduction

Belgium 104.0 44.0 2.2
Bulgaria 18.0 0.0 0.0
Denmark 45.6 0.0 0.0
Germany 79.0 19.0 1.0
Estonia 9.7 0.0 0.0
Ireland 121.7 61.7 3.1
Greece 156.9 96.9 4.8
Spain 84.4 24.4 1.2
France 89.2 29.2 1.5
Italy 122.2 62.2 3.1
Cyprus 79.5 19.5 1.0
Latvia 40.9 0.0 0.0
Lithuania 39.9 0.0 0.0
Luxembourg 21.4 0.0 0.0
Hungary 78.5 18.5 0.9
Malta 67.9 7.9 0.4
Netherlands 66.5 6.5 0.3
Austria 81.7 21.7 1.1
Poland 54.4 0.0 0.0
Portugal 124.8 64.8 3.2
Romania 37.3 0.0 0.0
Slovenia 53.4 0.0 0.0
Slovakia 52.1 0.0 0.0
Finland 53.0 0.0 0.0
Sweden 36.4 0.0 0.0

Note: the table shows the debt-to-GDP ratio for the twenty-five signatory states of the “Treaty of Stability Coor-
dination and Governance”, and the “fiscal compact”. Countries highlighted in red have a debt-to-GDP ratio above
the target level of 60%, while those highlighted in blue have it below. The table also shows the total hypothetical
reduction needed to achieve the target and the annual decrease that is necessary to reach it in twenty years.

Table 2: list of endogenous and exogenous variables.

Endogenous Description

ỹt Output gap
π̂t Inflation rate
ĝt Public spending

ît Policy rate

b̂t Public debt
ŷFt Flex-output

b̂Ft Flex-debt
ĝFt Flex-spending

Exogenous Description

at Technology shock
ζt Cost-push shock
θt Monetary policy shock
ωt Government spending shock
τt Tax shock

Note: the table describes the endogenous and exogenous variables in the log-linearised ver-
sion of the model presented in section E. The five exogenous variables follows an AR(1)
process.
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Table 3: structural parameters.

Parameter Description Value

σ Coefficient of relative risk aversion 1.000
β Discount factor 0.990
φ Inverse of Frish elasticity 1.180
θ Non-reoptimizing firms 0.909
ε Demand elasticity 3.700
α Output elasticity w.r.t. labour 0.300
φπ Reaction coefficient on inflation 1.661
φy Reaction coefficient on output 0.143
αg Fiscal Compact debt-return rate 0.050

Note: the table summarises the structural parameters used in the baseline calibration of the
model.

Table 4: steady-state parameters.

Parameter Description Value

C Consumption 0.740
G Government spending 0.259
Y Output 1.000
B Public debt 0.600
R Interest rate 0.010
T Tax revenue 0.259
MC Marginal cost 0.729
P Price 1.000
Ω Gov. spending shock 1.000

Note: the table summarises the steady-state parameters used in the baseline calibration of
the model.

Table 5: shock persistence and volatility.

Persistence Description Value

ρa Productivity 0.828
ρζ Cost-push 0.000
ρθ Policy rate 0.000
ρω Public spending 0.956
ρτ Tax 0.956

Volatility Description Value

σa Productivity 0.612
σζ Cost-push 0.162
σθ Policy rate 0.129
σω Public spending 0.329
στ Tax 0.329

Note: the table summarises the reduced form parameters used in the baseline calibration of
the AR(1) exogenous processes. Each process has two calibrated parameters, the ρi highlights
the autocorrelation and the σi the standard deviation of the normal innovation in percentage
points. i = {a, ζ, θ, ω, τ}.
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Table 6: structural parameters.

Parameter Standard calibration Plausibility range

σ 1.000 [0.50, 5.00]
β 0.990 [0.50, 0.99]
φ 1.180 [0.50, 5.00]
θ 0.909 [0.50, 1.00]
ε 3.700 [2.00, 7.00]
α 0.300 [0.10, 0.90]
φπ 1.661 [1.10, 2.50]
φy 0.143 [0.10, 0.50]

Note: the table summarises the structural parameters used in the baseline calibration of the
model, and the parameter ranges used in the sensitivity analysis..

Figure 1: EU debt-to-GDP ratio.

Est
on

ia

Bul
ga

ria

Lu
xe

m
bo

ur
g

R
om

an
ia

Sw
ed

en

Li
th

ua
ni
a

La
tv
ia

Slo
va

ki
a

Slo
ve

ni
a

D
en

m
ar

k

Fin
la
nd

Pol
an

d

N
et

he
rla

nd
s

C
yp

ru
s

Spa
in

M
al
ta

G
er

m
an

y

H
un

ga
ry

Aus
tri

a

Fra
nc

e

Bel
gi
um

Ire
la
nd

Por
tu

ga
l

Ita
ly

G
re

ec
e

0

20

40

60

80

100

120

140

160

180

  
d

e
b

t-
to

-G
D

P

Note: the figure shows the debt-to-GDP distribution for 28 EU countries in 2012. The black solid line presents the
debt-to-GDP target level according to the fiscal compact rule. Blue bars highlight countries with debt-to-GDP ratio below
the target, while red bars countries with the ratio above the target.
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Figure 2: predicted debt-to-GDP ratio according to the fiscal compact rule.
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Note: the figure shows the debt-to-GDP ratio for Portugal (red-solid line), Italy (red-dashed line), Ireland (red-dash-
dotted line), Finland (blue-solid line), Denmark (blue-dashed line) and Sweden (blue-dash-dotted line). Also, the black
solid line with markers highlights the debt-to-GDP median of the 28 EU countries. Data before 2012 are realized, while
after 2012 are computed using equation (1) and in the grey area. We set α = 0.05 and b∗/y∗ = 60%.

Figure 3: Distributions and variance of public debt and spending.
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Note: on the left-hand side, the figure shows the simulated data distributions of the public debt and spending for different
levels of αg. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under the baseline
rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers show the
limiting case in which αg = 1. On the right-hand side, the bar plots highlight the variance under the respective rules:
loose, baseline, tight and limit.
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Figure 4: Public debt and spending. Simulated series.
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Note: the figure shows the 50 periods moving-average of 2000 simulated data points of the public debt and spending for
different levels of αg. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under
the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers
show the limiting case in which αg = 1.

Figure 5: technology shock.
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Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% technology shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under
the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers
show the limiting case in which αg = 1.
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Figure 6: government spending shock.
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Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% government spending shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black
lines under the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines
with markers show the limiting case in which αg = 1.

Figure 7: tax shock.
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Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% taxation shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under the
baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers show
the limiting case in which αg = 1.
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Figure 8: cost-push shock.
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Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% cost-push shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under
the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers
show the limiting case in which αg = 1.

Figure 9: monetary policy shock.
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Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% monetary policy shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines
under the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with
markers show the limiting case in which αg = 1.
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Figure 10: IRFs impact differences.
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Note: the figure shows the impact differences of the IRFs for technology, government spending, taxation and cost-push
shocks for models with the loose and limiting rule (αg = 0.025 and αg = 1). Red bars highlight responses for which the
limiting case is lower than the loose one. Blue bars present the opposite case.

Figure 11: sensitivity. Technology shock with β ∈ [β, β̄].

Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% technology shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under
the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers
show the limiting case in which αg = 1. The lines highlights the IRFs values for the baseline calibration of β = 0.99. The
areas of the respective colors highlights the (5th, 95th) percentile of the IRFs distribution camputed varying β ∈ [0.5, 0.99].
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Figure 12: sensitivity. Government spending shock with β ∈ [β, β̄].

Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% government spending shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black
lines under the baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines
with markers show the limiting case in which αg = 1. The lines highlights the IRFs values for the baseline calibration
of β = 0.99. The areas of the respective colors highlights the (5th, 95th) percentile of the IRFs distribution camputed
varying β ∈ [0.5, 0.99].

Figure 13: sensitivity. Tax shock with β ∈ [β, β̄].

Note: the figure shows the impulse response functions to the main macroeconomic variables in the model to a negative
1% taxation shock. Dash-dotted red lines show the response under the loose rule αg = 0.025. Solid black lines under the
baseline rule αg = 0.05. Dashed blue lines under the strict rule αg = 0.25. Finally, solid green lines with markers show
the limiting case in which αg = 1. The lines highlights the IRFs values for the baseline calibration of β = 0.99. The areas
of the respective colors highlights the (5th, 95th) percentile of the IRFs distribution camputed varying β ∈ [0.5, 0.99].
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A Appendix: system of non-linear equations

The non-linear system of equations is made-up by equations (A.1) to (A.12). These are the labor

supply, Euler equation, household’s budget constraint, firms optimal price setting, labor demand,

price dynamics, inflation dynamics, goods market clearing, labor market clearing, government budget

constraint, fiscal compact rule, Central Bank feedback rule. We also model the exogenous variables as

autoregressive processes of order one. The endogenous variables are Wt, Pt, Nt, Ct, Rt,Πt, P
∗
t , Yt,MCt,

Bt, Gt,Π
F
t while At, Θt, Tt and Ωt are exogenous forcing variables.

Wt

Pt
= Nφ

t C
σ
t (A.1)

Et

[
β

(
Ct+1

Ct

)−σ 1

Πt+1

]
=

1

(1 +Rt)
(A.2)

PtCt +Bt = (1 +Rt)Bt−1 +WtNt − Tt + ΠF
t (A.3)

P ∗t =M
∑∞

k=0(θβ)kEt
[
C−σt+kYt+kPt+kMCt+k

]∑∞
k=0(θβ)kEt

[
C−σt+kYt+k

] (A.4)

MCt =
Wt

Pt

1

(1− α)AtNt(i)−α
(A.5)

Pt =
(
θP 1−ε

t−1 + (1− θ)P ∗1−εt

) 1
1−ε (A.6)

Π1−ε
t = θ + (1− θ)

(
P ∗t
Pt−1

)1−ε
(A.7)

Yt = Ct +Gt (A.8)

Nt =

(
Yt
At

) 1
1−α

∫ 1

0

(
Pt(i)

Pt

)− ε
1−α

di (A.9)

Bt = (1 +Rt)Bt−1 + PtGt − Tt (A.10)

Gt =
Tt
Pt

+ αg

(
B∗

P ∗Y ∗
− Bt

PtY F
t

)
+ Ωt (A.11)
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Rt
R

=

(
Πt

Π∗

)φπ ( Yt
Y T

)φy
Θt (A.12)

B Appendix: steady-state relationships

In steady-state we obtain the relationships described by equations (B.1) to (B.12) by dropping the

time subscript.
W

P
= NφCσ (B.1)

R =
1− β
β

(B.2)

PC = RB +WN − T + ΠF (B.3)

MC =
1

M
(B.4)

MC =
W

P

1

(1− α)N−α
(B.5)

P ∗ = P (B.6)

Π = 1 (B.7)

Y = C +G (B.8)

N =

(
Y

A

) 1
1−α

(B.9)

B =
1

R
(PG− T ) (B.10)

G =
T

P
+ Ω (B.11)

Θt = 1 (B.12)
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C Appendix: real government budget constraint

It is a well-known issue in New-Keynesian models that price level may exhibit a non-stationary

behavior, leading to unitary eigenvalues and unit root processes. To address this issue, and remove

from the final system of equations any dependency from the price level, we rewrite the government

budget constraint and the fiscal compact rule in real terms. By dividing/multiplying by Pt and Pt−1

equation (A.10), and after some algebraic manipulations, we retrieve equation (C.2).

Bt
Pt

= (1 +Rt)
Bt−1

Pt−1

Pt−1

Pt
+Gt −

Tt
Pt

(C.1)

BR
t = (1 +Rt)

BR
t−1

Πt−1
+Gt − TRt (C.2)

The fiscal compact rule in real terms is ready available by collecting terms in equation (C.3).

Gt = TRt + αg

(
BR∗

Y ∗
− BR

t

Y F
t

)
+ Ωt (C.3)

D Appendix: log-linearisation

Model log-linearisation mainly follows the three Uhlig (1995) building blocks, reported in equations

(D.1) to (D.3).

ex̂t+aŷt ≈ 1 + x̂t + aŷt (D.1)

x̂tŷt ≈ 0 (D.2)

Et
[
aex̂t+1

]
≈ Et [ax̂t+1] (D.3)

Where x̂t and ŷt are real variables with values close to zero and defined as x̂t = ln(Xt) − ln(X)

and ŷt = ln(Yt)− ln(Y ). a represents a constant, however, the second and third building blocks are

defined up to a constant. As suggested by Uhlig we replace each variable by Xex̂t , than applying the

three building blocks. After some manipulations, all the constants drop out to each equations. The

fully-log-linearised model is reported in equations (D.4) to (D.16).

ŵt − p̂t = φn̂t + σĉt (D.4)
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ĉt = Etĉt+1 −
1

σ

(
ît − Etπ̂t+1

)
(D.5)

π̂t = (1− θ)(p̂∗t − p̂t−1) (D.6)

∞∑
k=0

θkβk (p̂∗t − p̂t−1) =
∞∑
k=0

θkβkEt
[(
m̂ct+k|t + (p̂t+k − p̂t−1)

)]
(D.7)

ĉt =
Y

C
ŷt −

G

C
ĝt (D.8)

n̂t =
1

(1− α)
(ŷt − ât)7 (D.11)

m̂ct = ŵt − p̂t − ât + αn̂t (D.12)

p̂t = (1− θ)p̂∗t + θp̂t−1 (D.13)

b̂t =
(1 +R)

Π

(
b̂t−1 − π̂t

)
+
R

Π
ît +

G

B
ĝt −

T

B
τ̂t (D.14)

ĝt =
T

G
τ̂t +

αgB

Y G
(ŷFt − b̂t) +

Ω

G
ωt (D.15)

ît = φππ̂t + φyỹt + θt (D.16)

D.1 Appendix: minimum set of equations

To simplify the model to a minimum set of equations, we mainly follow Gali (2008). Recalling the

convergence result for geometric series 1∑∞
k=0 θ

kβk
= (1 + βθ), equation (D.7) can be rewritten as

7Taking the log-deviation of the market clearing condition we get

N (1 + n̂) =

(
Y

A

) 1
1−α

(
1 +

(
1

1− α

)
(ŷt − ât)

)
+RES (D.10)

where RES is a very small quantity in a neighborhood of the zero inflation steady-state and can be neglected in a
first order Taylor expansion. See Gali (2008) chapter 3, Appendix 3.3.

ŷt = (1− α) n̂t + ât (D.11)
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(D.17).

p̂∗t − p̂t−1 = (1− βθ)
∞∑
k=0

θkβkEt
[(
m̂ct+k|t + (p̂t+k − p̂t−1)

)]
(D.17)

As α 6= 0, we rule out the constant return to scale hypothesis, meaning m̂ct+k|t 6= m̂ct+k. We

than need to find an equation for m̂ct+k|t. Starting from the marginal cost equation and plugging

n̂t = 1
1−α(ât − αŷt) we derive an equation for m̂ct+k, and accordingly for m̂ct+k|t – equations (D.18)

and (D.19).

m̂ct+k = ŵt+k − p̂t+k −
1

1− α
(ât+k − αŷt+k) (D.18)

m̂ct+k|t = ŵt+k − p̂t+k −
1

1− α
(ât+k − αŷt+k|t) (D.19)

Thus, equating the two expressions, and by plugging the demand schedule, we derive an expression

for m̂ct+k|t
8.

m̂ct+k|t − m̂ct+k =
α

1− α
(ŷt+k|t + ŷt+k) (D.20)

m̂ct+k|t = m̂ct+k +
αε

1− α
(p̂∗t − p̂t+k) (D.21)

Finally, by plugging (D.21) into (D.17), and after some algebraic manipulations, using π̂t = (1 −

θ)(p̂∗t − p̂t−1), we can retrieve an equation for the New-Keynesian Phillips curve.

p̂∗t − p̂t−1 = (1− βθ)
∞∑
k=0

θkβkEt
(
mct+k −

αε

1− α
(p̂∗t − p̂t+k) + (p̂t+k − p̂t−1)

)
(D.22)

p̂∗t − p̂t−1 = (1− βθ) Θ
∞∑
k=0

θkβkEtmct+k +
∞∑
k=0

θkβkEt (p̂t+k − p̂t−1) (D.23)

p̂∗t − p̂t−1 = (1− βθ) Θ
1

(1− θβF )
mct +

1

(1− θβF )
(p̂t − p̂t−1) (D.24)

p̂∗t − p̂t−1 = βθEt(p̂∗t+1 − p̂t) + (1− βθ) Θm̂ct + π̂t (D.25)

π̂t = βEtπ̂t+1 + λm̂ct (D.26)

Where Θ = 1−α
1−α−αε , λ = (1−θ)(1−βθ)Θ

θ . and F is the forward operator. Finally, after some manip-

ulations, the marginal cost equation is given by plugging into (D.13) the labour supply ŵt − p̂t =

8By taking log of the demand constraint Yt+k|t =
(

P∗
t

Pt+k

)−ε
(Yt+k) we have ŷt+k|t = ŷt+k + ε (p̂∗t − p̂t+k). Then

m̂ct+k = m̂ct+k|t + αε
1−α (p̂∗t − p̂t+k).
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σY
C ŷt − σG

C ĝt + φn̂t and the log of the market clearing conditions n̂t = 1
1−α (ŷt − ât).

m̂ct =

(
σY (1− α) + C(φ+ α)

C(1− α)

)
ŷt −

(
φ+ 1

1− α

)
ât −

σG

C
ĝt (D.27)

Re-arranging in a convenient way, and by plugging the log-linear equation of flexible equilibrium

output we derive equation (D.30)9.

m̂ct =

(
σY (1− α) + C(φ+ α)

C(1− α)

)
(
ŷt −

(
C(1− α)

σY (1− α) + C(φ+ α)

)((
φ+ 1

1− α

)
ât −

σG

C
ĝt

)) (D.28)

m̂ct =

(
σY (1− α) + C(φ+ α)

C(1− α)

)(
ŷt − ŷFt

)
(D.29)

π̂t = βEtπ̂t+1 + κỹt + ζπ,t (D.30)

where κ = λσY (1−α)+C(φ+α)
C(1−α) , while ζt = ρζζt−1 + εζ,t is the cost-push shock.

Secondly, to find a functional form for the output-gap on the form of the New-Keynesian IS curve,

we exploit the Euler equation. Recalling the log form of the Euler equation we have ĉt = Etĉt+1 −
1
σ (̂it − Etπ̂t+1). Plugging the market-clearing condition for the goods market we have the following

relationships:

ŷt = Etŷt+1 −
C

Y σ
(̂it − Etπ̂t+1)− G

Y
(Etĝt+1 − ĝt) (D.31)

To write it as function of the output-gap, we sum and subtract the flexible price output yFt .

ỹt = Etỹt+1 −
C

Y σ
(̂it − Etπ̂t+1)− G

Y
(Etĝt+1 − ĝt) + εy,t (D.32)

Where εy,t = ŷFt+1 − ŷFt .

E Appendix: the log-linearised model

The final model described by equations (8) to (14) and (16) to (24) is fully non-linear and cannot

be solved analytically. Numerical computation methods, as the projection technique is required to

approximate the non-linear policy function, and solving the model. However, as we derived the

flexible output equation in a log-linear fashion, the most straightforward route to solve the model is

by fully log-linearising it around the non-stochastic steady-state, and taking a first-order perturbation

approach. In this section, we summarise the log-linearised version of the model, described by equations

9yFt =
(

C(1−α)
σY (1−α)+C(φ+α)

)((
φ+α
1−α

)
ât + σG

C
ĝt
)
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(E.33) to (E.41). The full log-linearisation procedure is reported in the appendix.

ỹt = Etỹt+1 −
CY

σ
(̂it − Etπt+1)− G

Y
(Etĝt+1 − ĝt) + ε̂y,t (E.33)

π̂t = βEtπ̂t+1 + κỹt + ζt (E.34)

ît = φππ̂t + φyỹt + θt (E.35)

b̂t =
(1 +R)

Π

(
b̂t−1 − π̂t

)
+
R

Π
ît +

G

B
ĝt −

T

B
τ̂t (E.36)

ĝt =
T

G
τ̂t +

αgB

Y G
(ŷFt − b̂t) +

Ω

G
ωt (E.37)

ŷFt = Ξ

(
φ+ α

1− α
ât + ΞG

(
(αg + Y )T

Y G
τ̂t −

αgBR

Y GΠ
θt +

Ω

G
ωt −

αgB(1 +R)

ΠY G
b̂Ft−1

))
(E.38)

b̂Ft =
(1 +R)

Π
b̂Ft−1 +

R

Π
θt +

G

B
ĝFt −

T

B
τ̂t (E.39)

ĝFt =
T

G
τ̂t +

αgB

Y G
(ŷFt − b̂Ft ) +

Ω

G
ωt (E.40)

ε̂y,t = EtŷFt+1 − ŷFt (E.41)

Where κ = λσY (1−α)+C(φ+α)
C(1−α) , λ = Θλ (1−θ)(1−βθ)

θ , and Θλ = 1−α
1−α−αε . Also, ζt is a forcing variable

directly hitting the inflation level as in Smets and Wouters (2003). We assume that ζt is distributed

as an autoregressive process of order one with normal Gaussian innovation ζt = ρζζt−1 + εζ,t, where

εζ,t ∼ N(0, σ2
ζ ), ρζ is the autoregressive parameter with |ρζ | < 1, and σ2

ζ ∈ R+ is the variance of the

Gaussian innovation.

F Appendix: solution method

The log-linearised model can be solved via different methodologies, as it results in a system of linear

stochastic difference equations under rational expectations (Blanchard and Kahn, 1980; King and

Watson, 1998, 2002; Sims, 2002). Although these methodologies return approximately the same

solution, they are tailored for different issues that can arise in the model specification. We employ
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the technique developed by King and Watson (1998, 2002), and in this section, we briefly describe

their methodology. With some minor differences, all the methodologies start rewriting the system of

difference equations in companion form, as shown in equation (F.42).

A (Θ)EtYt+1 = B (Θ) Yt + C (Θ) Xt (F.42)

Where A (Θ) is the matrix of coefficients related to the forward-looking endogenous variables, B (Θ)

is the matrix of coefficients related to the predetermined variables and backward-looking variables;

finally, C (Θ) is the matrix of coefficients of the exogenous variables. These matrices depend on

structural parameters, steady-state values and reduced form parameters collected in the vector Θ.

Also, Yt+1 is a vector of forward-looking endogenous variables, while Yt is a vector of backward-

looking and predetermined variables. Xt is a vector of exogenous variables distributed as an AR(1)

and dependent on a set of i.i.d. exogenous shock. In our case, the choice of the King and Watson

(1998) solution methods is because the conditions necessary to solve the system are not fulfilled

(Blanchard and Kahn, 1980). The conditions require the invertibility of the leading matrix A (Θ) to

solve the companion form for EtYt+1, as in equation (F.43).

EtYt+1 = A (Θ)−1 B (Θ) Yt + A (Θ)−1 C (Θ) Xt (F.43)

To deal with this problem, we apply the generalized version of the Blanchard and Kahn (1980)

methodology due to King and Watson (1998, 2002). In the baseline case, we have eight endogenous

variables, two predetermined variables and five shocks. These variables are then collected in the

following vectors:

• EtYt+1 ≡ Et
[
ŷt+1, π̂t+1, ît+1, b̂t+1, ĝt+1, ŷ

F
t+1, b̂

F
t+1, ĝ

F
t+1, b̂t, b̂

F
t

]
• Yt ≡

[
ŷt, π̂t, ît, b̂t, ĝt, ŷ

F
t , b̂

F
t , ĝ

F
t , b̂t−1, b̂

F
t−1

]
• Xt ≡ [at, ζt, θt, ωt, τt]

In what follows, the leading matrix A (Θ) is decomposed to achieve invertibility. Thus, A (Θ) and

B (Θ) can be rewritten as in equation (F.44) – where the dependence from the vector Θ is not

reported for easyness of reading.

A = Q′ΩeZ
′, B = Q′ΛeZ

′ (F.44)

Where Q and Z are “unitary” matrices (QQ′ = Q′Q = I) and Ωe and Λe are upper-triangular

matrices containing the generalized eigenvalues. Than the system can be “de-coupled” into a stable

and an unstable part.

EtZt+1 = Λ−1
e ΩeZt + RXt (F.45)
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Where Zt = Z′Yt, R = Λ−1
e QC. Decoupling the system allows checking the system stability con-

ditions. Following Blanchard and Kahn (1980), a solution exists if the number of backward-looking

variables is equal to the number of stable roots, while the number of forward-looking variables must

be equal to the number of unstable roots10. If this condition is met, the variables will return to their

long-run equilibrium path after the model has been shocked11.
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