Introduction to DSGE Models

Luca Brugnolini

January 2015
Introduction to DSGE Models

Program

- DSGE Introductory course (6h)
 - Object: deriving DSGE models

- Computational Macroeconomics (10h) (Prof. L. Corrado)
 - Object: techniques to solve rational expectations linear models like DSGE (requires MATLAB)

- Topics:
 - DSGE History (Galì (2008) ch.1)
 - Real business cycle models (Galì (2008) ch.2)
 - New-Keynesian models (Galì (2008) ch.3)
Motivation
Why DSGE?

- **Historical reason: Neo-Classical Synthesis**

- **Theoretical reason: Robust to Lucas (1976), Lucas and Sargent (1978) Critique**
 - Microfoundation of macroeconomic models

- **Practical reason: CBs macroeconomic models**
 - Bank of Canada (ToTEM), Bank of England (BEQM), European Central Bank (NAWM), US Federal Reserve (SIGMA), IMF (GEM), European Commission (QUEST III)
DSGE Model

What is a DSGE

- *Dynamic* means there are intertemporal problems and agents rationally form expectations;

- *Stochastic* means exogenous stochastic process may shift aggregates;

- *General Equilibrium* means that all markets are always in equilibrium:
 - Exogenous/unpredictable shocks may temporarily deviate the economy from the equilibrium.
RBC Revolution

Main Points

• Seminal papers Kydland and Prescott (1982) and Prescott (1986)

• Efficiency of the business cycle (BC)
 • BC is the outcome of the real forces in an environment with perfect competition

• Technology is the main driver of the BC
 • Technology (Total factor productivity/Solow residual) is something exogenous

• No monetary policy references
 • Including money leads to “monetary neutrality”. Money has no effects on real variables, thus CBs have no power
NK Features
Main Points

- Monopolistic Competition
 - Each firm have monopolistic power in the market she operates

- Nominal rigidities
 - Sticky price/wage

- Money is not neutral
 - Consequences of rigidities
 - However, money is neutral in the long-run
Neo-classical Synthesis

Main Points

• Use of the RBC way of modelling
 • Infinitely living agents maximize utility given by consumption and leisure
 • Firms have access to the same technology and are subjected to a random shift

• Implementation of NK Features
 • Stiky price/wage
 • Monopolistic Competition
 • Money is not neutral → CBs have room for adjusting rigidities
RBC Model

Households

Assumptions:

- Perfect competition, homogeneous goods, zero profits
- Flexible price and wage
- No capital, no investments and no government
- Discrete time
- Rationally infinity-lived price taker agents
- Complete market and perfect information
- Money is unit of account (no medium of exchange or reserve of value)
- Regularity conditions on the utility function hold
- Additively separable consumption and leisure (CRRA functional form)
 - U differentiable and has continuous I, II derivatives
 - $\partial U/\partial C_t > 0$, $\partial U/\partial N_t < 0$, $\partial U/\partial C_t^2 < 0$ and $\partial U/\partial N_t^2 < 0$
RBC Model

Households

\[
\max_{C_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right)
\]

s.t.

\[
P_t C_t + Q_t B_t \leq B_{t-1} + W_t N_t + T_t
\]

\[
\lim_{T \to \infty} \mathbb{E}_t \{ B_T \} \geq 0, \ \forall t
\]

Variables: C_t: consumption; N_t: labor; B_t: bond; P_t: price; Q_t: bond price; W_t: wage; T_t: lump-sum transfer/tax.

Parameters: β: discount factor; σ: coef. of relative risk aversion/reciprocal of intertemporal elasticity of substitution; ϕ: inverse of the elasticity of work w.r.t. wage (inverse of Frish elasticity).
RBC Model
Households (cont’d)

F.O.C.

\[
\frac{W_t}{P_t} = N_t^\phi C_t^\sigma \tag{4}
\]

\[
\mathbb{E}_t \left[\beta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{1}{\pi_{t+1}} \right] = Q_t \tag{5}
\]
RBC Model

Firms

\[
\max_{N_t} \quad P_t Y_t - W_t N_t
\]

\[s.t.
\]

\[
Y_t = A_t N_t^{1-\alpha}
\]

\[
a_t = \rho_a a_{t-1} + \epsilon_{a,t}, \quad |\rho_a| < 1, \quad \epsilon_{a,t} \sim \mathcal{N}(0, \sigma_a)
\]

Variables: \(Y_t \): output; \(A_t \): technology; \(N_t \): labor; \(P_t \): price; \(W_t \): wage; \(a_t \equiv \log(A_t) \);

Parameters: \(\alpha \) output elasticity w.r.t. labor (return to scale determinant).
RBC Model

Firms (cont’d)

\[\frac{W_t}{P_t} = (1 - \alpha)A_t N_t^{-\alpha} \] (9)
RBC Model
Equilibrium

• Agents maximize utility subject to the budget constraint;
• Firms maximize profits subject to the production function;
• Goods and labor markets clear.

The last point in this setting without capital and government means

\[Y_t = C_t \] (10)
Problem: systems of non-linear rational expectation difference equations are hard to solve.

A possible solution: take the log and linearize around the non-stochastic steady state using the F.O. Taylor expansion.

\[f(x) \approx f(x_{ss}) + \frac{\partial f(x)}{\partial x}|_{x_{ss}}(x - x_{ss}) \]

(11)
RBC Model

Log-Linearization (cont’d)

An easy way to log-linearize (up to a constant) following Uhlig (1999):

- Set \(X_t = X e^{\hat{x}_t} \) (if \(X_t^\alpha = X^\alpha e^{\alpha \hat{x}_t} \))
- Approximate \(e^{\hat{x}_t} \approx (1 + \hat{x}_t) \) (if \(e^{\alpha \hat{x}_t} \approx (1 + \alpha \hat{x}_t) \))
- \(\hat{x}_t \hat{y}_t \approx 0 \)
- Use the Steady State relationships to remove the remaining constants
RBC Model
Non-Stochastic Steady State (NSSS)

\[Q = \beta \] \hfill (12)

\[\frac{W}{P} = N^\phi C^\sigma \] \hfill (13)

\[\frac{W}{P} = (1 - \alpha)N^{-\alpha} \] \hfill (14)

\[Y = N^{(1-\alpha)} \] \hfill (15)

\[C = Y \] \hfill (16)
RBC Model

Log-Linear Model

\[\hat{c}_t = \mathbb{E}_t \hat{c}_{t+1} - \sigma^{-1} \hat{r}_t \] (17)

\[\hat{\omega} = \phi \hat{n}_t + \sigma \hat{c}_t \] (18)

\[\hat{\omega} = -\alpha \hat{n}_t + a_t \] (19)

\[\hat{y}_t = (1 - \alpha) \hat{n}_t + a_t \] (20)

\[\hat{y}_t = \hat{c}_t \] (21)
RBC Model

Log-Linear Model (cont’d)

\[\hat{r}_t = \hat{i}_t - \mathbb{E}_t \pi_{t+1} \tag{22} \]

\[\hat{\omega}_t = \hat{w}_t - \hat{p}_t \tag{23} \]

Results:
- Real variables are determined independently of monetary policy
- Not clear how conduct monetary policy (indeterminacy)
- Nominal variables may be pinned-down setting an interest rate rule

\[\hat{i}_t = \phi \pi \pi_t \tag{24} \]
RBC Model
Linear Rational Expectation Model

\[A(\Theta)^E_t x_{t+1} = B(\Theta)x_t + C(\Theta)\epsilon_t \] \hspace{1cm} (25)

- The endogenous variables are \(x_t \equiv \{\hat{c}_t, \hat{n}_t, \hat{w}_t, \hat{y}_t, \hat{r}_t, a_t\} \).
- The exogenous variable is \(\epsilon_t \equiv \{\epsilon_{a,t}\} \).
- \(A(\Theta), B(\Theta) \) and \(C(\Theta) \) are matrices containing time invariant structural parameters.
- The parameter space is \(\Theta \equiv [\alpha, \beta, \phi, \sigma, \rho_a, \sigma_a] \).
There are many linear rational expectation solution methods:

- Balchard and Khan (1980)
- King and Watson (1998)
- Sims (2001)
- Uhlig (1999)

Returning (up to measurement errors)

\[x_{t+1} = D(\Theta)x_t + E(\Theta)\epsilon_t \]

Where \(D(\Theta) \) and \(E(\Theta) \) are matrices depending on parameters \(\Theta \)
Two approaches to deal with the parameters $\Theta = [\alpha, \beta, \phi, \sigma, \rho_a, \sigma_a]$

- **Calibration**
 - Calibration IS NOT estimation!
 - Long-run relationship (Hours worked per Household)
 - Results obtained in microeconomic studies (risk aversion, discount factor)

- **Estimation**
 - Matching Moments (GMM, Simulated GMM, Indirect Inference)
 - Maximum Likelihood
 - Bayesian Estimation
RBC Model

Standard Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Intertemporal elasticity of substitution</td>
<td>1.0</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>ϕ</td>
<td>Frisch elasticity of labor supply</td>
<td>1.0</td>
</tr>
<tr>
<td>α</td>
<td>Labor elasticity in the production function</td>
<td>0.36</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>Reaction coefficient on inflation</td>
<td>1.50</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Persistence of TFP shock</td>
<td>0.95</td>
</tr>
<tr>
<td>σ_a</td>
<td>Volatility of TFP shock</td>
<td>0.0072</td>
</tr>
</tbody>
</table>
RBC Model

TFP shock Impulse Response Functions

- Consumption
- Nominal Interest Rate
- Inflation
- Wage
RBC Model

Simulated data

![Chart showing simulated data for RBC model.](image-url)